

NANYANG **TECHNOLOGICAL** JNIVERSITY **SINGAPORE**

Problem:

- 1. Real image-depth paired datasets not widely available
- 2. Real depth sensory data are sparse/noisy

Approach: Train only on synthetic paired data and unpaired real images

Training:

Challenge: Large gap between synthetic images and real images

QUANTITATIVE RESULTS

Quantitative results on KITTI:

				lower	is bette	higher is better			
Method	Dataset	$^{\mathrm{cap}}$	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^{3}$
Eigen et al. 4 Fine	K(I+D)	$0-80\mathrm{m}$	0.190	1.515	7.156	0.270	0.692	0.899	0.967
Garg et al. 7 L12 Aug.8x	K(L+R)	1-50m	0.169	1.080	5.104	0.273	0.740	0.904	0.962
Godard et al. 10	CS+K(L+R)	$1-50 \mathrm{m}$	0.117	0.762	3.972	0.206	0.860	0.948	0.976
Kuznietsov et al. 20	K(D+L+R)	1-50m	0.108*	0.595^{*}	3.518^{*}	0.179	0.875^{*}	0.964^{*}	0.988^{*}
Baseline, train set mean	vK(I+D)	1-50m	0.521	11.024	10.598	0.473	0.638	0.755	0.835
Our f_T , all-real	K(I+D)	1-50m	0.114	0.627	3.549	0.178^{*}	0.867	0.960	0.986
Our f_T , all-synthetic	vK(I+D)	$1-50 \mathrm{m}$	0.278	3.216	6.268	0.322	0.681	0.854	0.929
Our T^2Net , D_{feat} only	vK(I+D) + K(I)	$1-50 \mathrm{m}$	0.233	2.902	6.285	0.300	0.743	0.880	0.938
Our T ² Net, D_{image} only	vK(I+D) + K(I)	1-50m	0.168	1.199	4.674	0.243	0.772	0.912	0.966
Our full $T^2 Net$	vK(I+D) + K(I)	1-50m	0.169	1.230	4.717	0.245	0.769	0.912	0.965

Quantitative results of ablation study:

		lower	is bette	higher is better			
Method	Abs Rel	Sq Rel	RMSE	RMSE log	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$
baseline, synthetic only	0.278	3.216	6.268	0.322	0.681	0.854	0.929
vanilla task network, synthetic only	0.295	3.793	8.403	0.363	0.600	0.817	0.912
vanilla task network, full approach	0.259	2.891	6.380	0.324	0.694	0.853	0.927
separated training	0.234	2.706	6.068	0.293	0.747	0.882	0.942
separated training with CycleGAN	0.212	1.973	5.340	0.269	0.750	0.895	0.952
self-domain reconstruction	0.199	1.517	5.349	0.298	0.695	0.866	0.9420
No reconstruction loss(epoch 3)	0.201	1.941	5.619	0.286	0.741	0.882	0.945
No feature loss	0.168	1.199	4.674	0.243	0.772	0.912	0.966
No image GAN loss	0.233	2.902	6.285	0.300	0.743	0.880	0.938
our full approach	0.169	1.230	4.717	0.245	0.769	0.912	0.965

T²NET: SYNTHETIC-TO-REALISTIC TRANSLATION FOR SOLVING SINGLE-IMAGE DEPTH ESTIMATION TASKS CHUANXIA ZHENG, TAT-JEN CHAM, JIANFEI CAI

SOURCE CODE

The source code and video are available at https://github.com/lyndonzheng/ Synthetic2Realistic

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

Synthetic Image

SimGAN [12]

CycleGAN [28]

$$\mathcal{L}_t(f_T) = ||f_T(\hat{x}_s) - y_s||_1$$

Ours(with reconstruction) Ours(no reconstruction)