

Motivation

Goal: Learn a visual codebook for tasks such as generation with full codevectors utilisation.

Issue:

1.Codebook collapse. Only a small subset of active codebook entries are optimized

2. Stop-gradient operator. Loss can only back propagate to the selected entries.

Green Points: "Dead" Codebook Entries

(a) VQ-VAE [37 Usage: 9.96%

Usage: 49.02%

(c) CVQ-VAE Usage: 100%

How to ensure the embedded features and codebook entries closely adhere to the same distribution?

Stage-1: Perceptual Compression

Online Clustered Codebook Chuanxia Zheng, Andrea Vedaldi

Visual Geometry Group, University of Oxford

Stage-1: Ablation Study on Image Quantization

(b) Codebook dimensionality. The blob's size refers to the dimensionality of codebook vectors {4,8,16,32,64,128}. The higher dimensionality does not ensure a better representation.

Methods	MNIST (28×28)			CIFAR10 (32×32)			FFHQ (256×256)		
	SSIM ↑	LPIPS ↓	rFID↓	SSIM ↑	LPIPS ↓	rFID↓	SSIM ↑	LPIPS ↓	rFID↓
near codevectors [39]	0.9790	0.0270	3.17	0.8553	0.2553	41.08	0.7282	0.1085	4.31
hard encoded features [8]	0.9814	0.0243	2.25	0.8988	0.1978	29.16	0.7646	0.0870	3.91
running average (ours)	0.9823	0.0236	2.23	0.8991	0.1897	26.62	0.8193	0.0603	2.94

(d) Codebook reinitialization methods. In previous works [39, 8], each code entry is associated only with a single feature.

Method	Dataset	rFID↓			
		(offline)	(online)		
andom		3.20	2.27		
inique	MNIET	2.84	2.24		
orobability	IVIINI5 I	2.78	2.23		
closest		2.51	2.59		
andom		34.49	26.04		
ınique	CIEA D 10	36.99	26.02		
probability	CIFARIO	31.10	26.62		
closest		32.31	25.99		

Anchor sampling methods. The choice of an-(c) chor sampling method has a significant impact on offline (one-time) feature initialization, while the online clustered method is robust for various samplings.

Stage-2: High-Fidelity Image Generation

	FID↓		Madal	FFHQ		ImageNet	
	Churches	Bedrooms	widdei	Steps	FID↓	Steps	FID↓
[19]	4.21	2.35	RQVAE [22] _{CVPR'2022}	256	10.38	1024	7.55
]	7.89	4.90	MoVQ [44] _{NeurIPS'2022}	1024	8.52	1024	7.13
T [10]	7.32	5.51	SQ-VAE [33] _{ICML'2022}	200	5.17	250	9.31
JAN [35]	1.59	1.52	LDM-4 [31] _{CVPR'2022}	200	4.98	250	10.56
8*	4.02	-	CVQ-VAE (ours)	200	4.46	250	6.87
4	-	2.95					
8 (reproduced)	4.15	3.57					
-LDM [32]-8	3.86	3.02					

Phung, D. Vector Quantized Wasserstein Auto-Encoder. ICML 2023.